Toma

GALCULUS REFERENCE

THEORY

DERIVATIVES AND DIFFERENTIATION

Definition: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

DERIVATIVE RULES

1. Sum and Difference: $\frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)$
2. Scalar Multiple: $\frac{d}{d x}(c f(x))=c f^{\prime}(x)$
3. Product: $\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

Mnemonic: If f is "hi" and g is "ho," then the product rule is "ho \mathbf{d} hi plus hid ho."
4. Quotient: $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$

Mnemonic: "Ho d hi minus hi d ho over ho ho."

5. The Chain Rule

- First formulation: $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$
- Second formulation: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$

6. Implicit differentiation: Used for curves when it is difficult to express y as a function of x. Differentiate both sides of the equation with respect to x. Use the chain rule carefully whenever y appears. Then, rewrite $\frac{d y}{d x}=y^{\prime}$ and solve for y^{\prime}.
Ex: $x \cos y-y^{2}=3 x$. Differentiate to first obtain $\frac{d x}{d x} \cos y+x \frac{d(\cos y)}{d x}-2 y \frac{d y}{d x}=3 \frac{d x}{d x}$, and then $\cos y-x(\sin y) y^{\prime}-2 y y^{\prime}=3$. Finally, solve for $y^{\prime}=\frac{\cos y-3}{x \sin y+2 y}$.

COMMON DERIVATIVES

1. Constants: $\frac{d}{d x}(c)=0$
2. Linear: $\quad \frac{d}{d x}(m x+b)=m$
3. Powers: $\quad \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad$ (true for all real $n \neq 0$)
4. Polynomials: $\frac{d}{d x}\left(a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}\right)=a_{n} n x^{n-1}+\cdots+2 a_{2} x+a$
5. Exponential

- Base $e: \quad \frac{d}{d x}\left(e^{x}\right)=e^{x} \quad$ - Arbitrary base: $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$

6. Logarithmic

- Base $e: \quad \frac{d}{d x}(\ln x)=\frac{1}{x} \quad$ - Arbitrary base: $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}$

7. Trigonometric

- Sine: $\quad \frac{d}{d x}(\sin x)=\cos x \quad$ Cosine: $\quad \frac{d}{d x}(\cos x)=-\sin x$
- Tangent: $\frac{d}{d x}(\tan x)=\sec ^{2} x \quad$ - Cotangent: $\frac{d}{d x}(\cot x)=-\csc ^{2} x$
- Secant: $\frac{d}{d x}(\sec x)=\sec x \tan x \quad$ - Cosecant: $\frac{d}{d x}(\csc x)=-\csc x \cot x$

8. Inverse Trigonometric

- Arcsine: $\quad \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \quad$ - Arccosine: $\quad \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
- Arctangent: $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$ - Arccotangent: $\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}$
- Arcsecant: $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$ - Arccosecant: $\frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{x \sqrt{x^{2}-1}}$

INTEGRALS AND INTEGRATION

DEFINITE INTEGPAL

The definite integral $\int_{a}^{b} f(x) d x$ is the signed area between the function $y=f(x)$ and the x-axis from $x=a$ to $x=b$.

- Formal definition: Let n be an integer and $\Delta x=\frac{b-a}{n}$. For each $k=0,2, \ldots, n-1$, pick point x_{k}^{*} in the interval $[a+k \Delta x, a+(k+1) \Delta x]$. The expression $\Delta x \sum_{k=0}^{n-1} f\left(x_{k}^{*}\right)$ is a Riemann sum. The definite integral $\int_{a}^{b} f(x) d x$ is defined as $\lim _{n \rightarrow \infty} \Delta x \sum_{k=0}^{n-1} f\left(x_{k}^{*}\right)$.

INDEFINITE INTEGRAL

- Antiderivative: The function $F(x)$ is an antiderivative of $f(x)$ if $F^{\prime}(x)=f(x)$.
- Indefinite integral: The indefinite integral $\int f(x) d x$ represents a family of

APPLIGATIONS

GEOMETRY

Area: $\int_{a}^{b}(f(x)-g(x)) d x$ is the area bounded by $y=f(x), y=g(x), x=a$ and $x=b$ if $f(x) \geq g(x)$ on $[a, b]$.
Volume of revolved solid (disk method): $\pi \int_{a}^{b}(f(x))^{2} d x$ is the volume of the solid swept out by the curve $y=f(x)$ as it revolves around the x-axis on the interval $[a, b]$.
Volume of revolved solid (washer method): $\pi \int_{a}^{b}(f(x))^{2}-(g(x))^{2} d x$ is the volume of the solid swept out between $y=f(x)$ and $y=g(x)$ as they revolve around the x-axis on the interval $[a, b]$ if $f(x) \geq g(x)$.

antiderivatives: $\int f(x) d x=F(x)+C$ if $F^{\prime}(x)=f(x)$.

FUNDAMENTAL THEOREM OF CALCULUS

Part 1: If $f(x)$ is continuous on the interval $[a, b]$, then the area function $F(x)=\int_{a}^{x} f(t) d t$ is continuous and differentiable on the interval and $F^{\prime}(x)=f(x)$.

Part 2: If $f(x)$ is continuous on the interval $[a, b]$ and $F(x)$ is any antiderivative of $f(x)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$

APPROXIMATING DEFINITE INTEGRALS

1. Left-hand rectangle approximation: $L_{n}=\Delta x \sum_{k=0}^{n-1} f\left(x_{k}\right)$	2. Right-hand rectangle approximation: $R_{n}=\Delta x \sum_{k=1}^{n} f\left(x_{k}\right)$

3. Midpoint Rule:

$$
M_{n}=\Delta x \sum_{k=0}^{n-1} f\left(\frac{x_{k}+x_{k+1}}{2}\right)
$$

4. Trapezoidal Rule: $T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)$
5. Simpson's Rule: $S_{n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)$

TECHNIQUES OF INTEGRATION

1. Properties of Integrals

- Sums and differences: $\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$
- Constant multiples: $\int c f(x) d x=c \int f(x) d x$
- Definite integrals: reversing the limits: $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
- Definite integrals: concatenation: $\int_{a}^{p} f(x) d x+\int_{p}^{b} f(x) d x=\int_{a}^{b} f(x) d x$
- Definite integrals: comparison:

Definite integrals: comparison:
If $f(x) \leq g(x)$ on the interval $[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
2. Substitution Rule-a.k.a. \mathbf{u}-substitutions: $\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u$

- $\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C$ if $\int f(x) d x=F(x)+C$.

3. Integration by Parts

Best used to integrate a product when one factor $(u=f(x))$ has a simple derivative and the other factor $\left(d v=g^{\prime}(x) d x\right)$ is easy to integrate.

- Indefinite Integrals:
$\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x$ or $\int u d v=u v-\int v d u$
- Definite Integrals: $\left.\int_{a}^{b} f(x) g^{\prime}(x) d x=f(x) g(x)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x$

4. Trigonometric Substitutions: Used to integrate expressions of the form $\sqrt{ \pm a^{2} \pm x^{2}}$.

Expression	Trig substitution	Expression becomes	Range of θ	Pythagorean identity used
$\overline{\sqrt{a^{2}-x^{2}}}$	$x=a \sin \theta$ $d x=a \cos \theta d \theta$	$a \cos \theta$	$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$	$1-\sin ^{2} \theta=\cos ^{2} \theta$
$\overline{\sqrt{x^{2}-a^{2}}}$	$x=a \sec \theta$ $d x=a \sec \theta \tan \theta d \theta$	$a \tan \theta$	$0 \leq \theta<\frac{\pi}{2}$ $d \leq \theta<\frac{3 \pi}{2}$	$\sec ^{2} \theta-1=\tan ^{2} \theta$
$\overline{\sqrt{x^{2}+a^{2}}}$	$x=a \tan \theta$ $d x=a \sec 2 \theta d \theta$	$a \sec \theta$	$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$	$1+\tan ^{2} \theta=\sec ^{2} \theta$

Volume of revolved solid (shell method): $\int_{a}^{b} 2 \pi x f(x) d x$ is the volume of the solid obtained by revolving the region under the curve $y=f(x)$ between $x=a$ and $x=b$ around the y-axis.
Arc length: $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ is the length of the curve $y=f(x)$ from $x=a$ to $x=b$.

Surface area: $\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ is the area of the surface swept out by revolving the function $y=f(x)$ about the x-axis between $x=a$ and $x=b$.

MOTION

1. Position $s(t)$ vs. time t graph:

- The slope of the graph is the velocity: $s^{\prime}(t)=v(t)$
- The concavity of the graph is the acceleration: $s^{\prime \prime}(t)=a(t)$.

2. Velocity $v(t) v s$. time t graph:

- The slope of the graph is the accleration: $v^{\prime}(t)=a(t)$
- The (signed) area under the graph gives the displacement (change in position)
$s(t)-s(0)=\int_{0}^{t} v(\tau) d \tau$

3. Acceleration $a(t)$ vs. time t graph

- The (signed) area under the graph gives the change
in velocity: $v(t)-v(0)=\int_{0}^{t} a(\tau) d \tau$

PROBABILITY AND STATISTICS

- Average value of $f(x)$ between a and b is $\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

CONTINUOUS DISTRIBUTION FORMULAS
X and Y are random variables.

- Probability density function $f(x)$ of the random variable X satisfies:

1. $f(x) \geq 0$ for all x;
2. $\int_{-\infty}^{\infty} f(x) d x=1$.

- Probability that X is between a and $b: P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$
- Expected value (a.k.a. expectation or mean) of $X: E(X)=\mu_{X}=\int_{-\infty}^{\infty} x f(x) d x$
- Variance: $\operatorname{Var}(X)=\sigma_{X}^{2}=\int_{-\infty}^{\infty}(x-E(x))^{2} f(x) d x=E\left(X^{2}\right)-(E(X))^{2}$
- Standard deviation: $\sqrt{\operatorname{Var}(X)}=\sigma_{X}$
- Median m satisfies $\int_{-\infty}^{m} f(x) d x=\int_{m}^{\infty} f(x) d x=\frac{1}{2}$.
- Cumulative density function $(F(x)$ is the probability that X is at most $x)$:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y
$$

- Joint probability density function $g(x, y)$ chronicles distribution of X and Y. Then

$$
f(x)=\int_{-\infty}^{\infty} g(x, y) d y .
$$

- Covariance: $\operatorname{Cov}(X, Y)=\sigma_{X Y}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-E(X))(y-E(Y)) f(x, y) d x d y$
- Correlation: $\rho(X, Y)=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$

GOMMON DISTRIBUTIONS

1. Normal distribution (or Bell curve) with mean μ an variance σ :

- $P(\mu-\sigma \leq X \leq \mu-\sigma)=68.3 \%$
- $P(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=95.5 \%$

2. χ-square distribution: with mean ν and variance 2ν : $f(x)=\frac{1}{2^{\frac{\nu}{2}} \Gamma\left(\frac{\nu}{2}\right)} x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}}$

- Gamma function: $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$

MICROECONOMICS

COST

- Cost function $C(x)$: cost of producing x units.
- Marginal cost: $C^{\prime}(x)$
- Average cost function $\bar{C}(x)=\frac{C(x)}{x}$: cost per unit when x units produced.
- Marginal average cost: $\bar{C}^{\prime}(x)$

If the average cost is minimized, then average cost $=$ marginal cost.

- If $C^{\prime \prime}(x)>0$, then to find the number of units (x) that minimizes average cost, solve for x in $\frac{C(x)}{x}=C^{\prime}(x)$.

REVENUE, PROFIT

- Demand (or price) function $p(x)$: price charged per unit if x units sold.
- Revenue (or sales) function: $R(x)=x p(x)$
- Marginal revenue: $R^{\prime}(x)$
- Profit function: $P(x)=R(x)-C(x)$
- Marginal profit function: $P^{\prime}(x)$

If profit is maximal, then marginal revenue $=$ marginal cost.

- The number of units x maximizes profit if $R^{\prime}(x)=C^{\prime}(x)$ and $R^{\prime \prime}(x)<C^{\prime \prime}(x)$.

PRIGE ELASTIGITY OF DEMAND

- Demand curve: $x=x(p)$ is the number of units demanded at price p.
- Price elasticity of demand: $E(p)=-\frac{p x(p)}{x(p)}$
- Demand is elastic if $E(p)>1$. Percentage change in p leads to larger percentage change in $x(p)$. Increasing p leads to decrease in revenue.
- Demand is unitary if $E(p)=1$. Percentage change in p leads to similar percentage change in $x(p)$. Small change in p will not change revenue.
- Demand is inelastic if $E(p)<1$. Percentage change in p leads to smaller percentage change in $x(p)$. Increasing p leads to increase in revenue.
- Formula relating elasticity and revenue: $R^{\prime}(p)=x(p)(1-E(p))$

CONSUMER AND PRODUCER SURPLUS

- Demand function: $p=D(x)$ gives price per unit
(p) when x units demanded.
- Supply function: $p=S(x)$ gives price per unit (p) when x units available.
- Market equilibrium is \bar{x} units at price \bar{p}. (So $\bar{p}=D(\bar{x})=S(\bar{x})$.)
- Consumer surplus:
$C S=\int_{0}^{\bar{x}} D(x) d x-\bar{p} \bar{x}=\int_{0}^{\bar{x}}(D(x)-\bar{p}) d x$

- Producer surplus:

$$
P S=\bar{p} \bar{x}-\int_{0}^{\bar{x}} S(x) d x=\int_{0}^{\bar{x}}(\bar{p}-S(x)) d x
$$

LORENTZ CURVE

The Lorentz Curve $L(x)$ is the fraction of income received by the poorest x fraction of the population.

1. Domain and range of $L(x)$ is the interval $[0,1]$.
2. Endpoints: $L(0)=0$ and $L(1)=1$
3. Curve is nondecreasing: $L^{\prime}(x) \geq 0$ for all x
4. $L(x) \leq x$ for all x

- Coefficient of Inequality (a.k.a. Gini Index):

$$
L=2 \int_{0}^{1}(x-f(x)) d x .
$$

The quantity L is between 0 and 1 . The closer L is to
1 , the more equitable the income distribution.

SUBSTITUTE AND COMPLEMENTATRY COMMODITIES

X and Y are two commodities with unit price p and q, respectively

- The amount of X demanded is given by $f(p, q)$.
- The amount of Y demanded is given by $g(p, q)$.

1. X and Y are substitute commodites (Ex: pet mice and pet rats) if $\frac{\partial f}{\partial q}>0$ and $\frac{\partial g}{\partial p}>0$.
2. X and Y are complementary commodities ($\mathbf{E x}$: pet mice and mouse feed)
if $\frac{\partial f}{\partial q}<0$ and $\frac{\partial g}{\partial p}<0$.

FINANCE

- $P(t)$: the amount after t years.
- $P_{0}=P(0)$: the original amount invested (the principal).
- r : the yearly interest rate (the yearly percentage is $100 r \%$).

INTEREST

- Simple interest: $P(t)=P_{0}(1+r)^{t}$
- Compound interest
- Interest compounded m times a year: $P(t)=P_{0}\left(1+\frac{r}{m}\right)^{m t}$
- Interest compounded continuously: $P(t)=P_{0} e^{r t}$

EFFEGTIVE INTEREST RATES

The effective (or true) interest rate, $r_{\text {eff }}$, is a rate which, if applied simply (without compounding) to a principal, will yield the same end amount after the same amount of time.

- Interest compounded m times a year: $r_{\text {eff }}=\left(1+\frac{r}{m}\right)^{m}-1$
- Interest compounded continuously: $\quad r_{\text {eff }}=e^{r}-1$

PRESENT VALUE OF FUTURE AMOUNT

The present value $(P V)$ of an amount $(A) t$ years in the future is the amount of principal that, if invested at r yearly interest, will yield A after t years.

- Interest compounded m times a year: $P V=A\left(1+\frac{r}{m}\right)^{-m t}$
- Interest compounded continuously: $\quad P V=A e^{-r t}$

PRESENT VALUE OF ANNUITIES AND PERPETUITIES

Present value of amount P paid yearly (starting next year) for t years or in perpetuity:

1. Interest compounded yearly

- Annuity paid for t years: $P V=\frac{P}{r}\left(1-\frac{1}{(1+r)^{r}}\right)$
- Perpetuity: $P V=\frac{P}{r}$

2. Interest compounded continuously

- Annuity paid for t years: $P V=\frac{P}{r_{\text {eff }}}\left(1-e^{-r t}\right)=\frac{P}{e^{r-1}}\left(1-e^{-r t}\right)$
- Perpetuity: $P V=\frac{P}{r_{\text {eff }}}=\frac{P}{e^{r}-1}$

BIOLOGY

In all the following models

- $P(t)$: size of the population at time t;
- $P_{0}=P(0)$, the size of the population at time $t=0$;
r : coefficient of rate of growth.

EXPONENTIAL (MALTHUSIAN) GROWTH / EXPONENTIAL DECAY MODEL
$\frac{d P}{d t}=r P$

- Solution:
$P(t)=P_{0} e^{r t}$
- If $r>0$, this is exponential growth; if $r<0$, exponential decay.

